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This paper presents a non-linear analysis of the dome-shaped notes on the
steelpan under compressive and thermal stresses. Equations are derived for
the static and dynamic response of symmetrically distorted notes. Analytical
results are obtained for modal frequencies, non-linear coupling coe�cients and
the buckling parameter. Experimental results demonstrate the vibration
characteristics and their dependence on temperature. Experimental results were
also obtained for the e�ects of stress relaxation which follows the shaping and
tuning process of these notes by hammer peening. The results of the analysis
are applicable to other shell-like structures not necessarily designed for musical
purposes.
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1. INTRODUCTION

The present study deals with some analytical and experimental results on the
thin, shallow, domed-shaped notes found on the steelpan. The previous reports
on the non-linear behaviour of these structures [1±3] made extensive use of
quadratic modal coupling. This paper ®nds expressions for the quadratic and
cubic coupling coef®cients in terms of the geometrical and elastic parameters
characterizing the notes. What is in fact interesting, indeed remarkable, is that
this musical instrument makes effective use of the quadratic and cubic non-
linearities of shells [4±6]. Panmakers have often used expressions such as ``the
pan has a life of its own'' when confronted with the curious behaviour of this
instrument during manufacture.
To avoid any misunderstanding, it is made clear that the non-linear

formulations in this paper do not provide the panmaker with a formula into
which numerical substitutions can be made for the calculation of note
frequencies or the relative magnitudes of the partials. Indeed, rather more
modest aims are set. The approach will be to begin with an elastically supported
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598 A. ACHONG

spherical cap under compressive and thermal stresses, impose shape
deformations on the cap to simulate the note-shaping process, and then solve the
resulting non-linear dynamic equations to yield expressions for the modal
frequencies and coupling coef®cients. It will be shown that this approach
provides explanations for a very broad range of effects observable on the pan
during and after tuning.
The study relates to some of the problems of concern to the panmaker such as

the enhancing of relative amplitudes of the partials on the instrument, harmonic
tuning of the overtones, and the production, on a consistent basis, of notes with
acceptable tonal characteristics. While the average panmaker may not have a
background in applied dynamics or experimental testing, it is important that the
factors characterizing the mechanisms of production of steelpan sound be
properly documented. The results of the present study, when combined with the
skills of the panmaker, can have signi®cant musical consequences including the
generation of strong partials, purity of tuning and providing rules for adjusting
eigenmodes and modal couplings.

2. NOTE PREPARATION AND DYNAMIC BEHAVIOUR

In order to develop a consistent and applicable theoretical model for the
steelpan notes it is necessary to consider the preparation of these shell-like steel
structures. Each note forms a sub-structure of a complex array of similarly
prepared shallow shells over the indented face of a steel drum [1]. The structure
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Figure 1. Typical arrangement of notes on the face of a tenor steelpan. The elliptical area of
mode localization is shown enlarged and elastically supported.
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of these notes, depicted in Figure 1, differ only in the details that give each note
its particular frequency and position on the musical scale. The family of
steelpans include the high-range tenor, the mid-range cello and the low-range
bass. Pans such as the double second, the guitar and others, ®ll in, to cover (with
overlap) the musical range from G1 (48�999 Hz) to F6 (1396�9 Hz).

2.1. PEEN-FORMING, ANNEALING, TUNING AND CHROMING

In the manufacture of the steelpan, one face of a steel drum is indented to a
centre-depth dependent on the type of instrument requiredÐtenors are indented
to a depth of approximately 18 cm while the corresponding depth for the bass is
around 10 cm. The shaping of the panface is achieved by the peening action of a
hammer applied to the top surface. The cylindrical side of the drum is cut to a
length consistent with the musical range of the instrumentÐthis skirt-length is
typically around 20 cm on the tenor and full length (56 cm) on the bass. The
raised notes are then made by peening and shaping from the underside.
The shaped pan is then subjected to a low-temperature stress relief annealing

process by heating to a temperature Ta (Ta<Teÿ 170�C, where Te is the
eutectoid temperature of the steel) for 20 to 30 min, followed by immersion in or
dousing with water. This is designed to reduce the effects of cold working
(peening) without affecting the mechanical properties of the partially ®nished
panface. Higher temperatures may completely eliminate the strain hardening
achieved on cold working, resulting in a material that is too soft for use on a
percussion instrument. The treated notes are then tuned (®rst-tuning) by a more
controlled shaping and peening action with the hammer.
It has become common practice today, after ®rst-tuning, to chrome the higher

frequency pans and to retune afterwards (second-tuning). Chroming is done
mainly for aesthetics and to reduce rusting.

2.2. BOUNDARY CONDITIONS AND INTERNAL STRESSES

The hammer peening to indent the panface and to form or tune the notes, like
shot-peening [7] or ball forming [8], induce residual compressive stresses in the
material which are partially reduced and redistributed by tempering. The
evidence for the existence of these residual compressive stresses on the steelpan,
comes directly from the observations of two effects [9].
The ®rst is the (infrequent) occurrence of localized buckling in small areas of

the note (usually around 2 cm across) during the tuning process. This effect,
termed ``¯apping'' for the ``paper-like'' behaviour displayed by the affected area,
is the ®rst of the ``curious behaviour'' observed by the panmaker. Localized
buckling is produced by the excessive compressive stresses in the region of
interest and the resulting reduction (to zero) of the effective dynamic stiffness.
The second effect is the small upward shift in the frequency of the notes after

the newly completed pans are made (the second ``curious behaviour''). This
tendency to ``run sharp'' is observable (to the trained ear) just one day after
manufacture and the frequency shift may slowly increase during the ®rst week.
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This shift has been interpreted by the author as a direct result of the reduction in
residual compressive stresses through stress relaxation.
Each note, by its connection to the rest of the panface, will be characterized

by a set of hidden boundary conditions describing the note edges, and by
unknown residual (compressive) stresses. The usual procedure of separating the
edge supports into independent translational and rotational springs (see Figure
1) as suggested by Achong [1] for the areas of localization, although possible in
principle, may not be easily achieved in practice, where, as expected, it will not
be possible to independently vary or control each of these two elastic
parameters. In practice it is found that it is not required that the stiffness be
constant along the boundary. In fact, panmakers, on purpose, create variations
in edge supports when for example, sections (or separate domains) of the same
note are tuned to different frequencies. This is illustrated in Figure 2. In cases
where the notes are tuned in the manner indicated in Figure 2, domain
interaction [2] is deliberately incorporated into the note dynamics.
As an all-metal instrument, thermal stresses will also play an important role in

the system dynamics. With just a few degrees change in temperature, noticeable
changes occur to the frequencies of the notes. Temperature changes can also
affect the tonal structure by modifying the relative amplitudes of the partials as
well as the amplitude and frequency modulations.

2.3. OBSERVATIONS

Achong [1, 10] has reported the con®nement (mode localization) of the
vibratory motion of a note, to an elliptical region de®ned within the area
bordered by the groove (see Figure 1). The grooves are not essential [1] although
they assist in blocking the note to reduce inter-note coupling. Investigation by
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Figure 2. Details of note arrangement showing musical tones that may be excited on the
panface.
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the author of many types of steelpans (tenors, seconds, cellos etc.) gives a mean
aspect ratio of 1�272 0�08 for the elliptical planform de®ning the area of
localization. The peening action applied during tuning is carefully applied to the
boundary that de®nes this area.
Achong [1] has given unmistakable evidence for the non-linear nature of the

vibratory modes excited within these areas of localization, by showing the
occurrence of the jump phenomenon and Hopf bifurcation on a properly tuned
note of a tenor pan. This type of behaviour can be observed on notes that show
strong coupling between the ®rst two modes and has also been shown by
Achong [1] to be a direct consequence of quadratic non-linearity on these shell-
like structures.
It has been found that the second mode can only be of signi®cant intensity

when the corresponding linear frequency is approximately twice the linear
frequency of the ®rst mode. The systems therefore possess internal resonances
(i.e., they are systems with commensurate linearized natural frequencies). When
the second mode to ®rst mode frequency ratio is (typically) within 22 0�006,
quadratic couplings are strong, resulting in deep amplitude and frequency
modulations [1, 2] and account for the distinctive tonal structure of the
instrument.
Notes that display a relatively weak second mode tend to display more rapid,

low level, amplitude (and frequency) modulations. They also show a somewhat
larger departure from harmonicity (second mode typically at the end of the
range 22 0�02). Notes produced with these weak mode-coupling characteristics,
however, lack the musical lustre and colour of notes with strong couplings.
King and Vakakis [11] developed an energy-based methodology for non-linear

resonant modal interactions and in applying the method to a ``3:1'' resonance on
a hinge±clamped beam have shown that the response of the non-resonant
functions are minimal in comparison with the resonant mode. This result which
is qualitatively in agreement with the observations made on the steelpan would
suggest the occurrence of these resonances in a wider variety of engineering and
musical systems (the Chinese gong for example).
For variations on a pan, good panmakers create a mixture of notes with

varying degrees of mode coupling (although they lack the understanding of this
non-linear process).

3. NON-LINEAR ANALYSIS

3.1. THE BASIC SHELL STRUCTURE

In the analysis that follows, the non-linear dynamics are developed for the
shell-like region where the motion is localized, as shown in Figure 1. This region
is assumed as having a basic spherical form which can then be distorted into the
desired shape. While this procedure is not necessary, the strategy leads to some
convenience in the development, especially as it would be desirable to
incorporate the tuning process in which the notes are changed from one shape to
another. In addition to this, the ``rise'' is a readily noticeable feature of the
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dome-shaped notes. It would therefore be bene®cial to regard the rise as a
distinguished parameter and to keep it separated from other parameters de®ning
the shape (or form) of the shell. By not concealing the rise within some general
shape-function, some aspects of the role played by this physically meaningful
parameter may be determined even without completely solving the ®nal
equations.
In the present analysis, a completely satisfactory description of the problem is

obtained by restricting the analysis to regions displaying axisymmetric properties
on a circular planform (recall that the mean aspect ratio is 1�27, not too far from
unity). While this restriction has the effect of removing the aspect ratio as a
tuning parameter, it still allows the note dynamics to be fully studied.
The shell geometry is depicted in Figure 3. R is the mid-surface radius (with

R=R0=constant, when the form is perfectly spherical), a is the planform
radius, H0 is the rise, and h (not shown) is the thickness. It will be convenient to
de®ne the ratio H0/h as the ``rise factor''. W, uf and uy are, respectively, the
transverse, azimuthal and radial displacements, and are functions of the space
co-ordinates and time. Since only axisymmetric deformations are considered, all
displacements and stresses are independent of the variable f and uf=0. A
position co-ordinate r is de®ned as r=R sin y. As shown in reference [10], the
relative dimensions of these structures satisfy the criteria for treatment as
shallow shells.

R

W

u

a

H0

Figure 3. Shell geometry.
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The analysis begins with the basic shell equations given by Connor [12] and by
Grossman et al. [6] for the axisymmetric motion of a thin homogeneous
spherical shell (in dimensionless form):

1

12
r4W� 2�1� �� a

2R0

� �
a

h

� �2 @

@x
� 1

x

� �
u� 4

a

2R0

� �
W

� �

� �1� �� a

h

� � a

2R0

� �
@W

@x

� �2

ÿ a

h

� � @

@x
� 1

x

� �

6
@W

@x

@

@x
� �
x

� �
u� 2�1� �� a

2R0

� �
W
@W

@x
� h

2a

� �
@W

@x

� �3
" #

� @
2W

@t2
� 0,

�1a�

@

@x

@

@x
� 1

x

� �
u� 2�1� �� a

2R0

� �
@W

@x
� h

2a

� �
@

@x
� 1ÿ �

x

� �
@W

@x

� �2

� 0, �1b�

where u(x, t) and W(x, t), in units of shell thickness h, are the radial and
transverse displacements respectively, x= r/a, r4= (@2/@x2+ (1/x)@/@x)2,
t= gt, g2=Eh2/[ra2(1ÿ �2)], with E being Young's modulus, r the shell
density and � denotes Poisson's ratio. Equation (1a) represents the dynamical
equilibrium condition for the forces acting on an in®nitesimal element of
the shell while equation (1b) is the compatibility condition for the displacement
®elds u(x, t) and W(x, t). Equations (1) include the ®rst order effects of
bending and stretching, but contain no rotatory (torsional) or longitudinal
inertia terms.
If the edge of the shell is ®xed in the longitudinal direction and elastically

supported by translational and rotational springs having, respectively,
distributed stiffness K (N/m2) and C (Nm/m) (as in Figure 1), the necessary
boundary conditions are
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where D is the ¯exural rigidity de®ned as D=Eh3/12(1ÿ �2). In general, K and
C may not be constant along the edges but to retain the axisymmetric nature of
the analysis, their constancy is required. For the clamped edge, C=1, K=1,
making [@W/@x]x=1=0, [W]x=1=0.
By symmetry, the following conditions hold at the pole:

�u�x�0 � 0, �@W=@x�x�0 � 0: �3a, b�
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3.2. FORCED OSCILLATIONS AND STICK IMPACTS

Forced oscillations (for steady state or bifurcation studies) are considered by
including a harmonically applied surface load that is symmetrical about the pole
and normal to the surface. Stick impacts may also be considered by including a
short duration surface load applied normal to the surface over an area (the
contact area) dA=pb2/4 where b is the stick-width. To maintain the symmetry
of the motion being considered here, the mid-impact point must be at the pole
(in the terminology of the pannist, this point on the note is referred to as the
``sweet-spot''). The general form of the load can be written as z(x)p(t), where z(x)
is a shape function describing the distribution of the applied load over the
surface and p(t) is a sinusoidal function for harmonic loading or a pulse for stick
impacts. The forcing term to be added to the right-hand side of equation (1) is
therefore �z(x)p(t), where

�z�x� � �1ÿ �
2�

E

a

h

� �4
z�x�:

For harmonic loading,

p�t� � sin�Ot�, �4�
where O=o/g with o as the external driving frequency. On the steelpan,
sinusoidal excitation may be applied acoustically or by attaching an
electromagnetic vibrator at some point remote from the note being excited.
For stick impacts, the force±time history p(t) can be modelled by a half-sine

function

p�t� � sin�pt=tc�,
� 0,
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where tc= gtc with tc as the contact-time. If the applied force is assumed to be
uniform over the area dA, then one has
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3.3. VISCOUS DAMPING

Since the dynamic equations will prove to be non-linear, implying the
possibility of internal resonances, the shell material may be subjected to several
frequencies at the same time. In the analysis by Achong [3], the damping
coef®cient m was assumed to be independent of frequency and therefore the same
for each excited mode. Not only was this assumption con®rmed experimentally
[3], it also proved to be effective in allowing the integration of the non-linear
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equations to proceed. The inclusion of viscous damping adds to the left-hand
side of equation (1a) the term ��m@W=@t, where �m � mg�1ÿ �2�a4=�Eh3� with m
as the damping coef®cient. It should be noted that the damping coef®cient is a
temperature dependent parameter.

3.4. COMPRESSIVE AND THERMAL STRESSES

The next modi®cation is the inclusion of a uniform compression ÿNc (N/m)
applied radially along the shell boundary. This adds a constant in-plane stress sc
(=ÿNc/h) to the stress components syy and sff , which in turn introduces to the
left-hand side of equation (1a) the extra terms ��Ncr2Wÿ 2�Nca

2=�hR�o� (see, for
example, reference [13]), where �Nc � Nca

2�1ÿ �2�=Eh3.
For this all-steel instrument, it is reasonable to assume uniform temperature

(and uniform temperature change) over the area of a single note. Because of the
small thickness of the material (around 0�3 mm) one can also assume that the
temperature does not vary through the shell thickness. Thermally induced shear
forces therefore do not arise.
For a uniform temperature rise dT the affected shell stress±strain relations

(including the effects of compression) are

syy � E

�1ÿ �2� �eyy � �eff ÿ �1� ��adT � � sc ,

sff � E

�1ÿ �2� �eff � �eyy ÿ �1ÿ ��adT � � sc ,

�7a, b�

where a is the thermal expansion coef®cient. These stress-strain relations lead to
simple expressions for the thermally induced in-plane stress resultants
Nyy � Nff � hEadT=�1ÿ ��. As in the case of in-plane compressive loading,
thermal loading will produce two additional terms on the left-hand side
of equation (1a). These terms are ��NTr2Wÿ 2�NTa

2=�hR0�, where �NT �
adT�1� ���a=h�2.
Combining the effects of in-plane loading and uniform temperature rise,

the modi®cation to equation (1) is the addition of the terms
���Nc � �NT�r2Wÿ 2��Nc � �NT�a2=�hR0�. This result for the combined effects can
be obtained directly by making use of the ``body-force analogy'' [14]. One
immediately observes from this result that temperature changes will produce
effects identical to those observed for changes in the compressive forces.

3.5. DEFORMED SHELL

Consider now the shell to be deformed symmetrically about the pole such that
R=R0+ q(x) �H0, where q(x) is an imperfection function representing a small
(dimensionless) distortion of the shell mid-surface and H0= a2/2R0. Along the
boundary of the shell, q(1)=0. The radius of curvature Rc of the mid-surface of
this deformed shell will vary with the angle y:
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1

Rc
� R2 � 2�dR=dy�2 ÿ R�d2R=dy2�

�R2 � �dR=dy2�3=2
: �8�

Since q(x) �H05R0, by dropping all terms higher than ®rst order in q(x) �H0/
R0, the quotient Q(x) (=R0/Rc), to be referred to here as the surface
imperfection, can be de®ned:

Q�x� � 1ÿ 2
H0
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qÿ 1

2

d2q

dx2
: �9�

On the notes of the steelpan, the ratio H0/a takes values typically around 1/40
[10], so that the second term in Q(x) may be relatively small. For the deformed
shell, the variable curvature Q(x)/R0 replaces 1/R0 in the development of the new
equations to replace the perfect shell equations (1a,b).

3.6. EXTENDED DYNAMIC EQUATIONS

By including forcing, damping, in-plane loading, temperature change and shell
deformation into the system of non-linear dynamic equations, the new set of
equations are
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4. STATIC AND DYNAMIC STATES

4.1. TRI-MODAL SOLUTION OF THE NON-LINEAR EQUATIONS

On inspecting equations (10) one clearly sees the appearance of linear,
quadratic and cubic terms in the displacement W (x, t). This means that in
addition to the natural modes at frequencies on (n=1, 2, 3, . . . ), components at
mon (m=2, 3) and at combination frequencies will be present. However, the
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panmaker can tune the notes to ensure the close harmonicity of the natural
modes on1 no1, thereby achieving a reduction in the number of spectral
components and setting the conditions necessary for the generation of internal
resonances. While it would be possible to obtain a solution involving all the
spectral components, for the purposes of the present work, the lead taken by the
panmaker will be followed by applying the condition on1 no1, n=2, 3, . . . .
Experimental results in reference [1] show that for the steelpan, only the ®rst

three (and occasionally four) frequency components are of suf®cient amplitudes
to be of musical interest. Therefore, in order to solve equation (1x) for the
de¯ection, it will be assumed that the variable W(x, t) may be expressed in
separable form as the sum of a space-dependent function representing the static
state and three space and time-dependent functions representing the dynamic
state of the system. Thus, one can write the truncated series expansion

W�x, t� � c0 �
X3
i�1

ci�x�wi�t�, �11�

where the modal co-ordinates (mode shapes) ci (i=1, 2, 3) and static state c0

must satisfy both the boundary conditions in equation (2) and the conditions at
the pole (equations (3a, b)), the modal co-ordinates Wi(t), are unspeci®ed
functions of time to be determined. Higher modes (n>3), by assumption, do
not, contribute signi®cantly to the system response.
When W(x, t) is substituted from equation (11), equation (10b) is solved for

u(x, t) by successive integration and by employing the conditions of equations
(3a, b). Using this solution for u(x, t) in equation (10a), performing the
conventional Galerkin averaging (premultiplying equation (10a) by the ith modal
function and integrating from x=0 to x=1) and consolidating terms (see
Appendix A), yield the equations for the dynamic state. The static state is
extracted during this analysis before the Galerkin procedure is applied. The
functionals L, M, P, S, V, X, Y and Z which appear in these equations are
de®ned in Appendix A. In deriving the coupling parameters in the dynamic
equations, close harmonicity on1 no1 is assumed.

4.2. THE STATIC STATE

The static equation describing the dimensionless surface displacement c0(x),
produced by compressive and thermal stresses is given by
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where (�) 0=d(�)/dx. The special case of ��Nc � �NT��H0=h� � 0, arising when the



608 A. ACHONG

compressive and thermal stresses are zero or the note surface is ¯at (H0=0), has
the trivial solution c0=0.
The shape of the stressed note is described by the radius

R�x� � R0 � q�x�H0 � c0�x�h: �13�
Equation (13) shows that the equilibrium shape of the note is dependent on both
the form imposed by the panmaker in shaping the note (the R0+ q(x)H0 terms)
and that induced by the stresses (the c0(x)h term). In practice, it will not be
possible to separate these two contributions by direct measurement. From
equation (13), it is clear that note shapes are determined not only by the
panmaker but also by the underlying mechanism (dependent on in-plane
compressive forces and thermal stresses) that controls the static equilibria of
these shell structures. This gives a partial explanation to the panmaker's
observation that the pan appears to have ``a life of its own''. This is an effect
that can be minimized but not removed entirely because of the shell-like
geometry of the notes.

4.3. THE DYNAMIC STATE

If the external force p(t) is resolved into its temporal Fourier components
Fn(p(t)), the modal equations derived from equations (10a, b) are a set of
second-order ODEs given by

d2wn

dt2
� mn

dwn

dt
� o2
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X3
i, j�1

ajk,nwjwk �
X3

i, j,k�1
bijk,nwiwjwk � pn , �n � 1, 2, 3�,

�14�
where d2wn/dt2 is the inertial term, mn dwn/dt represents viscous damping
�mn�: �m�, o2

nwn is the usual structural stiffness term (which includes the effects of
thermal and compressive stresses),

P3
i,j�1 ajk,nwjwk represent quadratic stiffness,P3

i,j,k�1 bijk,nwiwjwk represents the cubic stiffness, and the pn are the modal
external forces, with

pn � Fn�p�t��
�1
0

�z�x�cnx dx

� �� �1
0

c2
nx dx

� �
: �15�

The modal equations are coupled by the non-linear terms with coef®cients aij,n
and bijk,n .
The method of multiple scales [15, 16] may be used to construct a uniformly

valid, asymptotic expansion of the modal equations, as done by Achong [1, 3]
where only the quadratic (even-order) couplings are retained.
The procedure for obtaining numerical solutions for c0 and cn , and the

corresponding eigenfrequencies on , will involve lengthy iterations and extensive
use of differential equation solvers. Although this problem is not a part of the
present work, one may add that in solving for the eigenfrequencies
corresponding to trial values for the spring constants K and C, it would be
necessary to de®ne detuning parameters sn (where on= no12sn). As explained
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in references [1±3], the detuning parameters determine the tonal structure of a
sounded note.

4.4. SMALL-DISPLACEMENT MODAL FREQUENCIES

The modal frequencies on are given by the equation

o2
n �

1

12
�Ln�cn� � 8�1� �� H0

h

� �2

�Mn�Q2cn� ÿ
1

2
�1� ���Pn�Qc 0n;Q�

� �

ÿ ��Nc � �NT��Xn�cn� � 2�1� �� H0

h

� �
f�Yn�c 00, Qc 0n� � �Yn�c 0n, Qc 00�

� �Mn�Qc 00c
0
n� ÿ �Sn�c 00c 0n, Q� ÿ �Vn�Qc0c

0
n� ÿ �Vn�Qcnc

0
0�g

ÿ 3

2
�Vn�c 0nc

02� � 1

2
�Zn�c 0n, c

02
0 � � �Zn�c 00, c 00c 0n�: �16�

The modal frequencies on are seen to depend on (1) the compressive and
thermal stresses through the term with ��Nc � �NT� as a factor and through the
terms involving the static displacement c0, (2) the rise-factor (H0/h) and surface
imperfection (Q), both of which are parameters that are varied during tuning,
and (3) the modal co-ordinates cn which incorporate the spring constants on the
note boundary. Generally, the frequencies will increase with the rise-factor. If the
imperfection function Q tends to increase the overall curvature of the note, the
frequencies may increase. Grossman et al. [6] have analyzed the case for perfectly
spherical caps (for which Q=1 and �Mn�Q2cn� � 1� under zero compressive and
thermal stresses ��Nc � 0 � �NT�, to obtain the ®rst three terms of equation (16).
Using equation (16), one can explain the operation of an unorthodox method

used by panmakers to tune the instrument. Since the effect of reducing the
compressive stress �Nc in equation (16) is an increase in frequency (don Aÿd�Nc

for suf®ciently small stress changes), ®ne tuning of the instrument can be done
by heating individual notes with a blowtorch then allowing the notes to cool
naturally to ambient temperature. Localized heating will produce a
redistribution and reduction of the residual compressive stresses (stress-relieving).
After cooling, when the treated note is sounded, there will be a clearly
discernable ``sharpening'' of the tone.
When this procedure is taken together with the initial peening, shaping and

tempering of the pan, one sees that the ®nal tuned state (characterized by
frequency) of an individual note, can be arrived at through in®nitely many
different ways. It can be said therefore, that the tuned state has a history. The
conclusion is that the modal frequencies are not uniquely determined by the note
geometry and the spring constants (K and C) de®ning the boundary. The same
conclusion was arrived at in reference [10].
Since on is dimensionless, the small-amplitude modal frequencies fn in Hertz

can be found from
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fn � on

2p

������������������������
Eh2

ra4�1ÿ �2�

s
�17�

Unlike the small-amplitude frequencies de®ned above, the non-linear (large
amplitude) frequencies are functions of time (being dependent on the modal
interactions) and must be determined dynamically from the time derivative of
the phases [1]. In general these non-linear sounding frequencies will not be equal
to fn because of the pitch glides and modulations [1] that characterize the tones
of the steelpan.

4.5. BUCKLING

If the small-amplitude frequency for the ®rst mode under the condition of zero
compressive and thermal stresses is de®ned as o10, a buckling parameter s can be
de®ned as

s � ��Nc � �NT�
�X1�c 01�
o2

10

� B�c0�
o2

10

, �18�

where B(c0) is the negative of the sum of all terms in c0 appearing in equation
(16). For the stressed note, the ®rst mode small amplitude frequency can then be
written as

o1 � o10�1ÿ s�1=2: �19�

Buckling then occurs for s=1, in which case the lowest mode frequency is
reduced to zero as the global thermal expansion and/or compressive stress
cancels out the structural stiffness for w1 [17, 18]. Such cancellation can be
observed in small regions on the note area but is not allowed to occur over the
entire note. The panmaker can correct this compressive stress-induced buckling
(``¯apping'') by peening (``stretching'') the regions slightly away from the
affected area. Proper stress-relief tempering during manufacture can reduce the
tendency to buckle.

4.6. COUPLING COEFFICIENTS

In order to consolidate coef®cients formed by the permutation of the
subscripts on ajk,n and bijk,n (not including the mode designator, n) an asterisk
will be used; for example, a�jk,n � ajk,n � akj,n .

4.6.1. Square term coe�cients

The coef®cient for the only term of the form ajj,nw2
j (the quadratic interaction

of mode j with itself), is found in mode 2 for j=1, and is given by
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a11,2 � 2�1� �� H0

h

� �
�Y2�c 01, Qc 01� �

1

2
�M2�Qc

02
1 � ÿ

1

2
�S2�c 02

1 , Q� ÿ �V2�Qc1c
0
1�

� �
ÿ 3

2
�V2�c 00c

02
1 � � �Z2�c1, c

0
0c
0
1� �

1

2
�Z2�c 00, c

02
1 �: �20�

It was shown in references [1±3] that this coupling coef®cient plays a key role
in determining the amplitude of the second mode as it controls the energy
transferred from mode 1 to mode 2 via internal resonance. In the limit H0! 0,
as the shell tends towards the ¯at plate, the terms with H0/h as a prefactor will
be reduced to zero and the remaining terms will vanish because, in the case of
the ¯at plate, c0=0. On these dome-shaped notes, the rise-factor H0/h will
therefore be the main parameter controlling the a11,2 coef®cient for the second
mode. The effects of temperature and compressive stresses are introduced
through the dependence on c 00.

4.6.2. Cross-term coe�cients

The coef®cients a�12,1, a
�
23,1 (mode 1), a�13,2 (mode 2), and a�12,3 (mode 3), for

cross terms of the form a�jk,nwjwk are given by

a�jk,n � 2�1� �� H0

h

� �
f�Yn�c 0

j , Qc
0
k� � �Yn�c 0

k , Qc
0
j � � �Mn�Qc

0
jc

0
k�

ÿ �Sn�c 0
jc

0
k , Q� ÿ �Vn�Qcjc

0
k� ÿ �Vn�Qckc

0
j �g � �Zn�c 0

j , c
0
0c

0
k�

� �Zn�c 0
k , c

0
0, c

0
j � � �Zn�c 0

0, c
0
jc

0
k� ÿ 3�Vn�c 0

0,c
0
jc

0
k�, �j 6� k�: �21�

These coupling coef®cients determine the energy transfers; from mode 2 back
to mode 1 (a�12,1), from modes 2 and 3 to mode 1 (a�23,1), from modes 1 and 3 to
mode 2 (a�13,2) and ®nally, from modes 1 and 2 to mode 3 (a�12,3). In the absence
of strong cubic non-linearity, the term a�12,3c1c2 will generate, and transfer
energy, to mode 3 through a combination resonance (a heterodyne effect). This is
the third mode mechanism suggested by Achong [1] on the steelpan notes when
only quadratic non-linearity is assumed. The cross-terms in equation (21) will all
vanish as H0! 0.
A general observation on all coef®cients aij,n is that through their dependence

on the static state c0, not only is the frequency altered by changes in thermal
and compressive stresses but so are the couplings that are second order in the
modal co-ordinates.

4.6.3. Cubic terms

Of all the cubic coef®cients, b111,3 is singled out for special mention because it
determines the generation of an internal resonance at o3. All other cubic
coef®cients are relegated to Appendix B. This coef®cient is expressed as
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b111,3 �
1

2
�Z3�c 01, c

02
1 � ÿ

1

2
�V3�c 03

1 �: �22�

In this expression, the effect of the rise-factor is not immediately obvious
(dependence comes only through the effect of the rise factor on the modal co-
ordinates cn). In fact, the terms involving the cubic coef®cients persist even at
the ¯at plate limit. Compared to the quadratic coef®cients, the cubic coef®cients
(on the pan) are consistently lower in magnitude and this explains why
panmakers have always experienced great dif®culty in obtaining strong third
modes on the instrument.

5. ELLIPSOIDAL NOTES

While the note dynamics can be understood from the present analysis with the
restriction to symmetrical motion on a circular planform, greater ¯exibility in
tuning is allowed on notes with elliptical areas of con®nement. On an elliptical
planform, the second and third natural modes can be more readily tuned to the
required harmonic relationship with the ®rst mode by employing modes that are
symmetrical with respect to the minor axis and the major axis, respectively.
To deal fully with ellipsoidal shapes, the co-ordinate space must be increased

dimensionally. This will yield equations that are much more complicated than
those presented here but is worth doing especially for the practical application of
the results. This re®nement will, however, leave the non-linear form of equation
(14) unchanged (see for example, reference [19]). In such an exercise, it would be
useful to produce a ``semi-general'' solution containing the aspect ratio of the
planform as an adjustable parameter in the same way that the rise factor appears
in the present equations. It would then be possible to avoid performing the
numerical solutions on the non-linear equations in order to see, albeit in a
qualitative way, how the aspect ratio affects mode couplings.

6. EXPERIMENTAL OBSERVATIONS

6.1. THERMAL EFFECTS ON FREQUENCY SPECTRA

Consider the note in an initial state of zero thermal stress (i.e., the steelpan is
at the temperature at which it was initially tuned). The temperature is then
increased by dT to move the pan to a ®nal state of thermal stress. Using
equation (16) together with the previous de®nitions for �NT and B(c0), for the
resulting small frequency shift do, one obtains

don � ÿ adT
2oi,n

�1� �� a

h

� �2
�Xn�cn� ÿ

Bf�c0� ÿ Bi�c0�
2oi,n

, �23�

where the subscripts i and f denote initial and ®nal values, respectively.
The ®rst term on the right-hand side of equation (23) represents the effect of

the change in dynamic stiffness brought about by the thermal stress, while the
second term in c0 represents the effect of the accompanying change in surface
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shape. The ®rst term should dominate to produce an approximately linear
dependence of frequency shift on temperature change. In addition, the ®rst term
predicts that the change in frequency will be proportional to (a/h)2, which means
that notes of larger surface area and of thinner material should show greater
dependence on temperature. In other words, the bass instruments with their
larger notes, should suffer a greater degree of mis-tuning as the pan temperature
is varied. For notes on elliptical planforms, to a ®rst approximation (aspect
ratios close to unity), a2 in equation (23) may be replaced by (ab) where a and b
are the semi-major and semi-minor axes respectively.
To con®rm these theoretical results, steelpans were subjected to temperature

changes in the range 23�5 to 57�C, and at each state, the surface velocity data
generated by impact were recorded. The experimental method for data collection
and handling can be found in reference [1]. Displacement data were computed
by integration and spectral data generated by taking the Fourier transform. The
frequency modulations [1] associated with the non-linear modal interactions are
expected to be much smaller than the thermally/compressively induced shifts in
frequency. To reduce estimation errors for the maxima on the spectra, a second-
order interpolation function [20] was applied using three frequency-amplitude
pairs of values at each peak.

6.1.1. Tenor

Figures 4(a) and (b) show the shift in ®rst-mode peaks for the G4 note
(elliptical planform, minor6major axes=106 13 cm) and the D4 note
(elliptical planform: 10�56 13 cm) on the tensor. The G4 note (393�2 Hz at
27�5�C) shifted downward in frequency at a rate of ÿ0�014 Hz/deg to present a
ÿ0�1% change in frequency at the ®nal temperature of 54�C. The D4 note
dropped from 293�5 Hz at 27�5�C to 288�2 at 54�C, representing a rate of
ÿ0�2 Hz/deg and a frequency change of ÿ1�8%. These rates of frequency
decrease with increasing temperature and are typical of the values for notes on
other tenor pans.
A secondary result, clearly observable on the spectral data, is the broadening

of the peaks as the temperature is increased. Corresponding to this increase in
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Figure 4. First mode peaks on the tenor for (a) the G4 note at 27�5�C (Ð) and at 54�C (- - -);
(b) the D4 note at 27�5�C (Ð) and at 54�C (- - -).
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bandwidth, there occurred a reduction in the duration of the sounded tone for
both these notes. This is of importance because it implies an increase in damping
as the temperature increases.

6.1.2. Bass

Figure 5 shows the complete spectra (below 400 Hz) at 27�5�C (full line)
and at 56�C (dotted line) for the F

]
2 note (planform minor6major

axes=186 27 cm) on a bass pan. On the scale of Figure 5, the peak
broadening is unobservable but by plotting the velocity data as in Figure 6 one
can observe the increase in duration from the longer persistence of the vibrations
at the lower temperature. Also, by comparing the two plots in Figure 6, one can
see the changes to the modulated velocity envelopes resulting from the effect of a
change in temperature on the modal coupling. The effect of temperature on the
damping of these shell structures is the subject of further study.
In Figure 5, the ®rst mode peak labelled b, at 92�40 Hz is shifted downward

(peak a) to 84�34 Hz. This represents a rate of ÿ0�28 Hz/deg or a frequency
change of ÿ8�7%. The second mode peak e (191�19 Hz), is shifted down to c
(177�57 Hz) for a change of ÿ7�1%. The third mode g (284�67 Hz) is shifted
down to f (261�35 Hz) for a change of ÿ8�2%.
The peak labelled d (184�60 Hz) on the 27�5�C data, corresponds to the

parametrically generated vibration controlled by the quadratic coupling
coef®cient a11,2. This non-linear mode will be observed with small detuning [1],
close to 2o1 (�26 92�40=184�80 Hz). At 56�C, the corresponding parametric
mode is not observable, indicating a possible reduction in a11,2. The cubic
parametric modes are unobservable at both temperatures. Notice, however, the
appearance at 56�C of a fourth mode h, at 354�14 Hz, very likely a normal mode
as the frequency is not close to multiples of the ®rst mode frequency or any
linear combination of lower frequences.
The second mode to ®rst mode frequency ratio on the F

]
2 note increases from

2�069 at 27�5�C to 2�105 at 56�C. Closer harmonicity would be required were this

10

2

4

6

8

0
250 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Frequency (Hz)

M
a

g
n

it
u

d
e

a b

cd

e

f g h

Figure 5. Spectra for the F]2 bass note at 27�5�C (Ð) and at 56�C (- - -).
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a note on a higher frequency pan, such as the tenor. The present note displays a
relatively weak second mode because the lack of close harmonicity results in a
reduction in energy transferred between ®rst and second modes. In any event,
dominating second modes are not required on the bass.
These observations are all consistent with equation (23) with the percentage

frequency shifts on the bass consistently higher than those on the tenor. Direct
comparison with the product (ab) is not possible because of the factor �Xn�cn�
which is dependent on the shape and boundary conditions (unknown) of the
particular note. For these ellipsoidal notes, �Xn�cn� will also take on a more
general form.

6.1.3. Cello

Similar observations were made on a steelpan cello at temperatures of 23�5,
34�5, 44, 50�0 and 57�C. This particular pan was selected not on the basis of
tonal qualities but rather to show the appearance of parametric excitations. On a
well tuned pan with good tonal qualities, because of the small degree of detuning
(close harmonicity), the spectral peaks for these excitations would have merged
too closely with the peaks for the normal modes. The results are shown in
Figures 7(a) to (f) for the Eb

3 note, where, for clarity, only the data at 23�5, 44
and 57�C are shown on the spectral plots. The frequency versus temperature
plots show some departure from linearity expected from the ®rst term on the
right-handside of equation (23). This shows the importance of the second term
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Figure 6. Velocity±time graphs for the F]2 bass note (a) at 27�5�C and (b) at 56�C.
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of this equation which contains the effects on frequency of temperature induced
changes to the mode shape.
In Figure 7(e), double peaks appear for the third modes. The lower frequency

peak on each plot represents the normal mode while the higher frequency peak
represents the parametric excitation at 3f1 resulting from the cubic non-linearity.
In Figure 7(f) a plot of the expected frequencies of the parametric excitations
(dotted curve) is shown. Notice that the amplitudes of all the peaks in Figure
7(e) grow with increasing temperature. Parametric excitations due to quadratic
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Figure 7. The Eb
3 note on the cello;. (a), (c) and (e) ®rst, second and third normal mode peaks,

respectively, at 23�5, 44 and 57�C. (b), (d) and (f) show the complete frequency±temperature
plots. Dotted lines in (d) and (f) are the plots of 2f1 and 3f1, respectively. Points marked by 6 in
(f) are the parametric excitations represented by the higher frequency components of the double
peaks in (e).
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non-linearities are not observable on the spectral data in Figure 7(c), due
possibly to merging or to low levels of excitation.

6.2. THE TRANSITION PERIOD BETWEEN FIRST AND SECOND TUNING

Immediately after ``®rst tuning'', the instrument goes through a rather
complex metallurgic/dynamic process as the stresses are relieved and
redistributed resulting in changes to the modal frequencies, the coupling
coef®cients and the surface shape. Using equation (16) together with the
previous de®nitions for �Nc and B(c0), for a small increase in the compression
dNc , one obtains the frequency shift

don � ÿ dNc�1ÿ �2�a2
2oi,nEh3

�Xn�cn� ÿ
Bf�c0� ÿ Bi�c0�

2oi,n
: �24�

One sees from equation (24), that larger notes or notes of thinner material
would be more susceptible to the effects of stress relaxation during the transition
period that follows tuning.
The sequence of changes during stress relaxation is unique to each note on a pan.

However, the results presented for the sample note will be typical of most notes.
Observations were made on a newly constructed tenor pan immediately after ®rst
tuning and then later, after being kept at an approximately constant temperature
of 23�C for 24 h. The shift in the spectral peaks corresponding to ®rst, second and
third modes for the Eb

4 note are shown in Figures 8(a) to (c), respectively.
In Figure 8(a), the ®rst mode shows a shift upwards from its initial frequency of

f1=314�84 Hz (peak 1) to d�1 � 317�68 Hz (peak 2), a shift of +2�84 Hz. In
Figure 8(b) the second mode natural frequency (peaks 3 and 4, respectively) shows
a shift from f2=609�59 Hz to f �2 =610�55 Hz (a shift of +0�96 Hz). The peak
labelled 5, at 629�94 Hz, corresponds to the slightly detuned parametrically excited
mode expected at 2f1 (=629�68 Hz). Twenty-four hours later, this parametric
mode is observed at peak 6 (637�94 Hz), now much more detuned from the value
of 2f �1 (=635�36 Hz). The sign (direction) of these frequency shifts indicate a
reduction in compressive stress (dNc< 0) consistent with stress relaxation.

2

4

0

1
2

310300 320 330 340

M
a

g
n

it
u

d
e

(a)

2

0

3

4

5 6

595570 620 645 670

Frequency [Hz]

(b)

1

0

7
8

895870 920 945 970

(c)

Figure 8. The effects of stress relaxation on the frequency components Eb
4 of the tenor note; Ð,

before relaxation; - - -, after relaxation. (a) First mode showing an upward shift after relaxation;
(b) changes to both the second normal modes (peaks 3 and 4) and the parametric excitations
(peaks 5 and 6); (c) shift in frequency of third normal modes.
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In Figure 8(c), the frequency for the third natural mode moved from
f3=888�62 Hz (peak 7) to f�3 =928�58 Hz (peak 8). This large shift may be
related to sensitive dependence on this particular note to changes in surface
shape (through the connection of c0 to the compressive stress). No parametric
excitation resulting from cubic non-linearities is observable.

7. CONCLUSION

The present work provides the structural analysis lacking in references [1±3]
where, for example, it was shown that all the ®rst and second mode modulation
features observed on the notes of the steelpan can be synthesized by a non-linear
model involving internal (quadratic) resonances. The effects of thermally or
compressively induced stresses on frequencies and coupling coef®cients have been
demonstrated. By carefully developing the non-linear equations in the present
work, numerical solutions were not required, instead, qualitative results were
obtained directly from the terms in the equations. This was particularly useful
because one has no direct access to or knowledge of the values for the elastic spring
constants (K andC) that determine the boundary conditions for the shell structures.
The analytical and experimental work both showed the existence of

parametrically excited modes in addition to the normal modes, providing the
means for internal resonances. Perhaps the most convincing demonstration of
the presence of internal resonances on this instrument comes during the tuning
process itself. The moment that the tuner has correctly shaped a note and set the
right conditions (boundary and in-plane stresses) by peening, the note ``sings''
loudly with a beautiful resonance. This is the moment when the modes are set
into a nearly perfect harmonic relationship.
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APPENDIX A: DEFINITION OF FUNCTIONALS

The following functionals in the form G (variable1, variable2, . . . ) are de®ned
(double integrals are the result of solving for u in equation (10b)):

L�A� � r4A, M�A� � A, �A1, 2�

P�A, B� � d

dx
� 1

x

� �
1

x

�x
0

�x
0

A dx

� �
x dxÿ x

�x
0

�x
0

A dx

� �
x dx

� �
x�1

� �� �
B,

�A3�

S�A, B� �
�

d

dx
� 1

x

� ��
1

x

�x
0

�x
0

d

dx
� 1ÿ �

x

� �
A dx

� �
x dx

ÿ x

�x
0

�x
0

d

dx
� 1ÿ �

x

� �
A dx

� �
x dx

� �
x�1

��
B, �A4�
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V�A� � d

dx
� 1

x

� �
A

� �
, X�A� � ÿr2A, �A5, 6�

Y�A, B� � d

dx
� 1

x

� ��
A

d

dx
� �

dx

� ��
1

x

�x
0

�x
0

B dx

� �
x dx

ÿ x

�x
0

�x
0

B dx

� �
x dx

� �
x�1

��
, �A7�

Z�A, B� � d

dx
� 1

x

� ��
A

d

dx
� �
x

� ��
1

x

�x
0

�x
0

d

dx
� 1ÿ �

x

� �
B dx

� �
x dx

ÿ x

�x
0

�x
0

d

dx
� 1ÿ �

x

� �
B dx

� �
x dx

� �
x�1

��
: �A8�

The Galerkin averaging performed over the nth mode gives a set of averaged
functionals as illustrated for the generic functional G:

�Gn�var1, . . .� �

�1
0

G�var1, . . .�cnx dx�1
0

c2
nx dx

: �A9�

APPENDIX B: CUBIC COUPLING COEFFICIENTS

In mode 1 the coef®cients for the terms b�113,1w
2
1w3 and b�223,1w

2
2w3 are given by

b�jj3,1 � �Z1�c 0j, c 0jc 03� �
1

2
�Z1�c 03, c

02
j � ÿ

3

2
�V1�c 02

j c
0
3�, � j � 1, 2�: �B1�

The coef®cient b�123,2, for the cubic term b�123,2w1w2w3 in mode 2 is given by

b�123,2 � �Z2�c 01, c 02c 03� � �Z2�c 02, c 01c 03� � �Z2�c 03, c 01c 02� ÿ 3�V2�c 01c 02c 03�: �B2�
Finally, in mode 3, and corresponding to the term b�122,3w1w

2
2, is the coef®cient

b�122,3 � �Z3�c 02, c 01c 02� �
1

2
�Z3�c 01, c

02
2 � ÿ

3

2
�V3�c 01c

02
2 �: �B3�
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